

django-sabridge - SQLAlchemy access to Django models

Motivation

Django’s ORM is wonderful and easy to use. When the standard ORM operations are
insufficient for an application, Django provides multiple methods [https://docs.djangoproject.com/en/dev/topics/db/sql/] for more directly
interacting with the database, including django.db.models.Manager.raw() [https://docs.djangoproject.com/en/dev/_objects/topics/db/sql/#django.db.models.Manager.raw]
and django.db.connection.cursor(). However, using these methods can easily
lead to vendor lock-in. Additionally, programmatically building SQL is a difficult
task (especially to do so securely).

SQLAlchemy [http://www.sqlalchemy.org/] offers an excellent SQL rendering
engine, which allows programmatic generation of SQL. By exposing Django models
via SQLAlchemy’s Expression Language [http://www.sqlalchemy.org/docs/core/],
a developer can build extremely complex queries while retaining
database-independence (vendor-specific features are still available).

Other efforts [http://code.google.com/p/django-sqlalchemy/] have aimed to
replace Django’s ORM with SQLAlchemy’s ORM. django-sabridge instead leaves
Django’s ORM in place, while allowing SQLAlchemy Expression Language to easily
access those Django models.

django-sabridge addresses a specific need. It may not be the ideal solution,
so please contribute better approaches. Please also be aware
of the Caveats.

Usage

To demonstrate sabridge, we will access
django.contrib.auth.models.User [https://docs.djangoproject.com/en/dev/_objects/ref/contrib/auth/#django.contrib.auth.models.User] through SQLAlchemy.

First, import and initialize the sabridge.Bridge:

>>> from sabridge import Bridge
>>> bridge = Bridge()

We use the model’s class to obtain the SQLAlchemy version of the table:

>>> from django.contrib.auth.models import User
>>> table = bridge[model]

The sabridge.Bridge returns an instance of
sqlalchemy.schema.Table [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table]. If we write data in Django, we can
then view that data via SQLAlchemy:

>>> User.objects.create(username='alice')
>>> result = list(table.select().execute())
>>> len(result)
1
>>> result[0][table.c.username]
u'alice'

Caveats

Transactions

sabridge does not re-use Django’s connection to the database,
thus if executing in a transaction, any data modified by either
Django or SQLAlchemy will not be visible to the other, until the
transaction is committed.

Practically, this means that any test cases that uses both Django
and SQLAlchemy will have to inherit from
django.test.TransactionTestCase [https://docs.djangoproject.com/en/dev/_objects/topics/testing/tools/#django.test.TransactionTestCase] instead of the more typical
django.test.TestCase [https://docs.djangoproject.com/en/dev/_objects/topics/testing/tools/#django.test.TestCase]. The TransactionTestCase does not
wrap each test in a transaction, thus the data modified by SQLAlchemy
and Django is not isolated. Unfortunately, the TransactionTestCase
is significantly slower than the normal TestCase. Refer to the
TransactionTestCase documentation [https://docs.djangoproject.com/en/dev/topics/testing/#django.test.TransactionTestCase].

Performance

sabridge uses SQLAlchemy’s reflection (autoload=True) to discover the
schema of the requested Django model. Efforts are made to reduce the number of
times introspection occurs, but a user of django-sabridge should make sure
that it fits within any performance requirements.

Contents

	sabridge API

	Developing django-sabridge

	Change Log
	0.0.1 - July 4th, 2011

	License

	Ideas

Links

	https://github.com/johnpaulett/django-sabridge

	http://django-sabridge.readthedocs.org

sabridge API

	
class sabridge.Bridge

	
	
__getitem__(model_cls)

	Returns the sqlalchemy.schema.Table [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Table] representation
of model_cls, a django.db.models.Model [https://docs.djangoproject.com/en/dev/_objects/ref/models/instances/#django.db.models.Model] subclass.

Use dict-notation to obtain the Table:

>>> from myapp.models import mymodel
>>> brige = Bridge()
>>> mytable = bridge[mymodel]
>>> print type(mytable)
<class 'sqlalchemy.schema.Table'>

Bridge stores the Table for the lifetime of the Bridge,
thus table reflection only occurs once per model for the Bridge.

	
connection_url()

	Build a URL for sqlalchemy.create_engine() [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine]
based upon the database defined by django.db.connection

	
meta

	sqlalchemy.schema.MetaData [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData] instance bound to the current
Django database connection.

Developing django-sabridge

Get the code: http://github.com/johnpaulett/django-sabridge

Setup the environment:

virtualenv --no-site-packages env
source env/bin/activate
pip install -r dev_requirements.txt
python setup.py develop

Run the test suite:

./runtests.py

Change Log

0.0.1 - July 4th, 2011

	Initial release

	Basic mapping from Django’s Model class into SQLAlchemy’s Table class using
SQLAlchemy’s table introspection.

License

Copyright (c) 2011, John Paulett
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of django-sabridge nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JOHN PAULETT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

Ideas

A collection of some random ideas & thoughts for future implementations

	Easier access for the through table for django.db.models.ManyToManyFields
than requiring the user to manually access Model.column._through()

	We could use SQLAlchemy to generate the SQL for django.db.connection.cursor(),
allowing reuse of Django’s current transaction. This should currently work,
but we could add some sugar for making it easier & documenting it. It would
mean that you no longer get a SQLAlchemy ResultProxy back.

Index

 _
 | B
 | C
 | M

_

 	
 	__getitem__() (sabridge.Bridge method)

B

 	
 	Bridge (class in sabridge)

C

 	
 	connection_url() (sabridge.Bridge method)

M

 	
 	meta (sabridge.Bridge attribute)

 nav.xhtml

 Table of Contents

 		django-sabridge - SQLAlchemy access to Django models

 		sabridge API

 		Developing django-sabridge

 		Change Log

 		0.0.1 - July 4th, 2011

 		License

 		Ideas

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

